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1. INTRODUCTION

Let E be a normed linear space (nls) over the real field R and G a non-
empty subset of E. For a bounded set 4 < E let us define

radG(A)zinfgeGsupusA “a—g“’ (11)
cent(A4)={goe G:sup,. 4 la— gol = radg(A4)}. (1.2)

The number rad;(A) is called the Chebyshev radius of A with respect to G,
and an element goecentg(A4) is called a best simultaneous approximation
(or a Chebyshev center) of A with respect to G. When A is a singleton, say
A= {x},xeE, then rads(4) is the distance of x to G, denoted by
dist(x, G) and defined by

dist(x, G)=1inf, . lx — gl (1.3)

and cent;(A4) is the set of all best approximations of x out of G, denoted by
P;(x) and defined by

Pa(x)={go€G: | x — gol =dist(x, G)}. (1.4)

It is well known that for any bounded set 4 = E we have
rad;(A4) = radz(co 4) =radz(A4), (1.5)
centg(A) = centg(co A) = centg(A), (1.6)

where co stands for the convex hull. Therefore the assumption on the
bounded set 4 to be convex (or (and) closed) is not a restrictive one.
A systematic study of the sets defined by (1.2) when G = E was initiated
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by Garkavi [10-12] and the problem attracted much interest. At present
many results are known on the existence and unicity of the elements of best
simultaneous approximations, as well as on the continuity (semicontinuity)
of cent.

In this paper an attempt is made to obtain the natural framework for the
theory of best simultaneous approximation in a nls, and we show that the
normed almost linear space (nals) and the strong normed almost linear
space (snals)—which are introduced in this paper—constitute this natural
framework. These spaces, which might be of independent interest,
generalize the normed linear spaces. To support the idea that the nals is a
good concept, we introduce the concept of a “dual” space of a nals X,
where the functionals on X are no longer linear but “almost linear,” which
is also a nals. When X is a nls, then the “dual” space defined by us is the
usual dual space X*.

Roughly speaking, a nals is a set X together with two mappings
$: XxX— X and m: Rx X - X, which satisfy some of the axioms of a
linear space (Is), and on the set X there exists a functional |- ||: X - R
which satisfies all the axioms of an usual norm on a Is, as well as some
additional ones (which in the case of a nls are consequences of the axioms
of the norm). Denoting, as in the case of a ls, s(x, y) and m(4, x),
(x, yeX,AeR) by x+ y and Ax (and also m(—1, x) by —x), then for a
subset G < X we can define (1.3) and (1.4) replacing ||- || by || - [|. Con-
sequently, we can try to develop in a nals, a theory similar with that of the
theory of best approximation in a nls.

Among the properties of a Is which is not supposed to hold in a nals X is
the following: for each xe€ X there exists —xe X such that x4+ (—x)=0
(though there exists an element 0 in the nals X such that x + 0 = x for each
xeX). By the axioms of a nals, it follows that the set V,={xeX:
x+(—x)=0} is a Is, and we show that the theory of best simultaneous
approximation in a nls is a particular case of the theory of best
approximation in a nals X by elements of subsets G < V.

In contrast with the case of a nls, the || - || of a nals X does not generate
a metric p on X. (As a matter of fact, p satisfies all the axioms of a metric,
except for p(x, x) =0 for each x € X'). Consequently, in a nals X we cannot
discuss the continuity (semicontinuity) properties of the (set-valued) mapp-
ing x —» Pg(x). That is why we introduce the concept of a snals which,
roughly speaking, is a nals X together with a semi-metric p on X which is
related in a certain way with the || - || of X.

In the framework of a nals (snals) we can try to extend the following
types of results: (1) general results from the theory of normed linear spaces;
(2) results from the theory of best approximation in a nls; (3) results from
the theory of best simultaneous approximation in a nls. In this paper we
begin such a study and we hope that other results will be extended.
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We recall that another approach, completely different from ours, for the
theory of best simultaneous approximation, was investigated in [23, 18,97.
All spaces involved in this paper are over the real field R.

2. NORMED ALMOST LINEAR SPACES

An almost linear space (als) is a set X together with two mappings
s:XxX—X and m: Rx X - X satisfying (L,)-(Lg) below. For x, ye X
and A e R we denote s(x, y) by x+ y, m(4, x) by Ax and —1x by —x, when
these will not lead to misunderstandings, and in the sequel x — y means
x+(—y) Let x,yzeX and A ueR (L) (x+y)+z=x+(y+2z)
(L,) x+ y=y+x; (L;) There exists an element 0 X such that x+0=x
for each xeX; (L) lx=x; (Ls)0x=0; (Lg) Ax+y)=4ix+4iy;
(L) Mux)=(Au) x; (Lg) (A+pu)x=Ax+ux for 120, u=0.

21. If X is an als then: (a) The element O in L, is unique. (b) A0=0 for
each ZeR. (c) For each xe X and A<0, u<0, (A+u)x=Ax+pux. (d) If
x€ X is such that x —x =0, then (A+ pu)x=Ax+ux for all A, ne R.

2.2. DEFINITION. (a) A nonempty set Y of an als X is called an almost
linear subspace of X, if for each y,, y,€Y and AeR,s(y,, y,)eY and
m(A, y,)€ Y. (b) An almost linear subspace Y of X is called a linear sub-
space of X if s: Yx Y > Y and m: Rx Y — Y satisfy all the axioms of a Is.

For an als X we introduce the following sets:

Vy={xeX:x—x=0}, (2.1)
Wy={xeX:x=—x}. (2:2)

2.3. (a) The set Vy is a linear subspace of X, and it is the largest one.
The als X is a ls, iff V= X. (b) The set Wy is an almost linear subspace of
X, Wy={x—xixeX}and Vyrn Wy={0}. The als X is a s, iff Wy={0}.

Convex sets and cones in an als are defined as in a Is.

A norm on an als X is a functional || ||: X — R satisfying (N ,—N,) below.
Let x, y,zeXand Ae R. (N}) [lx—z|l < llx— pll + lly —zll; (N) liAxl =
IALlxWs (N3) [ixll =0 iff x=0. By (N,) we get

llx+ yIE< Nixil + W pli- (23)

By 2.3(a), Vyis als and so (Vy, [|'ll) is a nls. Therefore the weak con-
vergence (denoted by —) can be defined in V. (N4) If {v,},., is a net in
Vy,veVy, v,—v, then for each x€ X, ||x — v|| <lim inf]|x — v,|}.
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24. For each xe X, ||x)| =20 (use (N,) and (N,).

2.5. DEFINITION. An als X together with ||-||: X' - R satisfying (N,)-
(N,) is called a normed almost linear space (nals).

For xe X and r>0let By(x,r)={yeX: ||y — x|l <r}. Then By(x,r) is
a convex (possibly empty) subset of X. We denote B, = B(0,1) and
Sy={xeX:|xll=1}.

26. If X is a nals, X#Vy, ther p(x, y)=|x—y|l, x, ve X, is not a
metric on X since p(x, x)#0 for x¢ V. By 2.4, (N,), (N,), and 4.1 in Sec-
tion 4, p satisfies all the other axioms of a metric.

Our next aim is to introduce the concept of a dual space of a nals, which
we would like to be a nals also.

2.7. DerFINITION. Let X be an als. (a) A functional f* X — R is called an
almost linear functional if (2.4)-(2.6) hold:

Sx+y)=f)+f(y)  (x yeX), (2.4)
fUx)=Af(x) (A€R, 120, xeX), (2.5)
—f(=x)<f(x) (x € X). (2.6)

(b) A functional f: X — R is called a linear functional if (2.4) and
(2.5) hold for all x, ye X and 1€ R (hence (2.6) is also satisfied).

Let X* be the set of all almost linear functionals defined on the als X.
For f, f1, e X* and Ae R let s(f, f>) and m(4, f) be the functionals on
X defined by s(fy, f2)(x)=/fi(x)+/x(x) and m(4, f)(x)=flAx), xe X.
Then s: X* xX* > X* and m: RxX* > X* satisfy (L,}(Lg), where
0e X# is the functional which is 0 at each xe X. Therefore X* is an als.
Note that for each fe X*, f(0)=0 and the restriction |V is a linear
functional on V. We shall denote s(f;, f>) by /1 + /> and m(4, f) by Ao f.

28. Let feX*. (a) feVys iff [ is linear on X, iff —1of= —f, iff
S| Wx=0; (b) The functional h on X defined by h(x)= f(x)— f(—x), xe X,
belongs to  Vys; (c)If [f&Vys, then for the functional
h=f+(—10f)e Wys we have that h|V =0 and h#0.

When X is a nals, for fe X* define, as in the case of a nls,

A1l = sup{|f(x)|: x & By}. (2.7)
Let X*={feX”: | fll<oo}.
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2.9. THEOREM. X™* rogether with ||| || defined by (2.7) is a nals.

Proof. 1t is easy to show that (2.3), (N,) and (N,) hold, so X* is an als.
We show now N, ie, that for f,e X*, i=1, 2, 3, we have

Ifi+ (=TS <N+ (=1 D+ N2+ (=1 f). (28)

Let xeBy. Then |(fi+(=1-fi))x)=Ifilx)+fs(=x). If |(fi+
(=T fsx)[ = —fi(x) ~ f3(—x), then by (2.6) we get

[(fi+ (=1ef3))(x)] = = fi(x) — f3(—x)
<Sil=x)+ f2(x) + fo( = x) + f3(x)
SIS+ (=L o) (=X + [(f2+ (= 1o f3))(—x)|
<A+ (=T L+ L2+ (=1 fH)I

Similarly we can show that the same conclusion holds if |(f; 4+ (—15f3))
(x)| = fi(x) + f3(—x), whence (2.8) follows.

It remains to prove (N,). Let (¢,),., be a net in V. and @g€ V4. such
that ¢,—¢,. Let xe X and let F, be the functional on V,. defined by
Fo)=0(x), pe V.. By 2.9(a), ¢ is a linear functional on X and so F_ is
a linear functional on V.. Since ||F,|| < ||x||, we have F, e (V y«)*. Since
@, — @, it follows that lim @ ,(x) = @(x). Let now fe X* and xe By. We
have |(f+ (—10¢o))(x)| =1/(x) + @o( —x)| =lIm|(f + (= 1o 9,))(x)| <
lim inff| f+ (—1-¢,)|l, whence (N,) follows.

2.10. DeFINITION.  The space X* together with [}-{| defined by (2.7) is
called the dual space of the nals X.

Clearly, when X is a nls, then the dual space defined above is the usual
dual space of X. That is why we did not change the notation and ter-
minology.

2.11. DEFINITION.  An almost lineat subspace I” of the dual space X* of
a nals X is said to be total over X if the relations x,, x,€ X, f(x,)=f(x,)
for each fe I' imply that x, = x,.

As we shall show by examples given in the next section, the dual space of
a nals X may be not total over X. As a matter of fact, we do not know
whether X* might be only the single element 0.

For xe X let Ox be the functional on X* defined, as in the case of a nls,
by

Ox(f)y=f(x) (feX*). (29)
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Then Qx is an almost linear functional on X* and [|Qx|| < |Ix]|l, ie.,
QOx e X** In contrast with the case of a nls, here X** (as well as X*) may
be very poor (see the next section).

We conclude this section by defining some subsets of a nals X which will
be used in Sections 4 and 5. For examples, see the next section.

2.12. Let X be a nals and let J#G < Vy. We define Ry(G)c X in the
following way: x€ Ry(G) if for each ge G there exists v,€ Vy such that
(2.10) and (2.11) hold:

llx—gll = livg—gll, (2.10)

llx —oll = llv, — vl for each veV,. (2.11)

We have V< Ry(G). If G, = G,, then Ry(G,) < Ry(G,). We denote by Ry
the set R\ (V). When X is a nls, then Ry=X.

3. EXAMPLES

In Examples 3.2, 3.4-3.8, and 3.11 we exhibit normed almost linear
spaces which are not normed linear spaces. We recall the following
definition (see, e.g., [24]).

3.1. DEFINITION. Let G be a nonempty subset of the nls (E, ||-||) and let
C be a bounded subset of E. The set C is called remotal with respect to G if
for each ge G there exists ¢, € C such that sup,.. ¢ llc — gll = llc, — gl

3.2. ExaMpPLE. (a) Let (E, ||-||) be a nls and let X be the collection of all
bounded, convex, nonempty subsets 4 of E. For 4, 4,, A,e X and 1€ R,
define s(A,,A,)=A,+A,={a,+a,:a,€Ad,,a,€A4,} and m(i, A)=
AA={Aa:ae A}. The e¢lement 0 in X is the set {0}. Then X is an als and
Vy={{v}:veE}(=E). (b)For AeX, let ||A]l=sup,.4lal. It is

straightforward that ||-||: X — R satisfies (N;)-(N,) and so X is a nals.
(c) For each ¢ € E* there is f,€ X*, || f, Il = llol. Indeed, take
folA)=sup,c10(a) (A€ X). (3.1)

For each @€ E* there is h,c Vi, |lh,ll = lloll. Indeed, take h,(A4)=
(fo(A)— f,(—A))/2, Ae X, where f, is defined by (3.1). Unfortunately we
do not have a complete description of X* and V.. Now let 4 € X, where 4
is remotal with respect to G={0}. Then there exists f€ Sy. such that
f(4)=||A|l. Indeed, let age 4, |4l = llaoll and let @ € Sex, @(ag) = llaol.
Then for the functional f, defined by (3.1) we have |if =1 and
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Jo(A)=l4]l. (d) Let G be a nonempty subset of E. If A € X is remotal with
respect to G, then AeR(G) (for geG choose v,ed with
Sup,c 4 lla— gl = vy — gl; then v, satisfies (2.10) and (2.11)). The converse
is not always true, as the following example shows.

3.3. ExampLE. Let E=c¢ (equals the Banach space of all convergent
sequences endowed with the sup norm) and let G={0}. Let 4 = E be the
set of all elements a = (a,,), where lim o, =0 and |a,| <1—#n"!, ne N. Then
A€ X and A is not remotal with respect to G. For the only element 0 in G
let vo=(B,)€E, where B,=1—n""',neN. Then |4l =|vel|=1, and
4 ~o|l = lvg—v]| for each ve E, ie., A€ Ry(G).

34. ExampLE. (a) Let (E, ||-||) be a nls and let X be the collection of all
bounded, closed, convex, nonempty subsets 4 of E. Let Oe X, m and |||
be defined as in Example 3.2 and define s(4,, 4,)=A,+A4,,4,,4,e X.
Then X is a nals, and we can repeat word for word what was said in Exam-
ple 3.2. (b) We can show that X* is total over X. Indeed, let A, 4,e X

such that f(A4,)= f(A,) for each fe X* For Ae X we have

A= () {veE:info(4)<o(v)<supp(4)}. (3.2)

PeSgr

Now let ¢ € S and let f, € X* be defined by (3.1). By hypothesis, we have
folA)=£,(42) and (=1of,)(4,)=(~1¢1,)(4,), whence sup p(d,)=
sup @(4,) and inf ¢(4,)=inf ¢(A4,). By (3.2) we obtain that A4,=4,.
Hence the mapping Q: X — X** defined by (2.9) is injective. Here, we do
not know an example of an Fe X**, F# Qx for each xe X.

3.5. ExaMPLE. (a) Let (E, ||-||) be a nls and let X be the collection of all
compact, convex, nonempty subsets of E. Let s, m, 0 and ||- || be defined as
in Example 3.4. Then X is a nals which has all the properties of the nals
discussed in Example 3.4. (b) For each 4 € X there exists fe Sy« such that
f(4)=||A|l. Therefore in this space |[QA|| = || 4|l for each 4 € X, where Q
is defined by (2.9). (¢c) Ry=X.

3.6. ExaMpLE. (a) Let (E, |-||) be an (AL)-space (see, e.g., [7]) and let
X be the set {xe E:x>0}. For x, ye X and A€ R, define s(x, y)=x+y
and m(4, x)=|A| x. The element 0 in X is the element 0 in E. Then X is an
als and Vy={0}. (b)For xeX, let [|x|l=Ix|. Then [|-|| satisfies
N,—N,, and so X is a nals. (c) We have X*= {¢|X: pe E*, ¢ >0} and
V y«={0}. Here X* is total over X and for each x € X there exists f € Sy,
with f(x) = flx[l. (d) Ry= {0}.
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3.7. ExamMPLE. (a) Let E be a Is and o€ E*, 9 #0. Let X={xekE:
¢(x)>0} U {0}. Define 5, m and 0 as in Example 3.6. Then X is an als and
Vy={0}. (b) For xe X, let ||x[| = ¢(x). We have (N;}~(N,) and so X
together with || - || is a nals. (c) Let f = @] X. We have X*={icf le R} =
{A1A20} and Vy.={0}. For each xeX we have f(x)=||x| and
IfIl =1 (d) Ry={0}.

3.8. ExaMpLE. (a) Let (E, ||-||) be a nls and let ¢ € Sg., ¢ attains its
norm on Sz. Then H={xeE:¢(x)=0} is proximinal in E (ie,
Pu(x)#¢ for each xeE) and there exists a linear selection
pu(x)e Py(x), xe X (see, eg, [25]). Let X={xeE: o(x)>0}. For
x,yeX and A>0 define s(x, y)=x+ y,m(4, x)=4ix and m(—1,x)=
X —2py(x). The element 0 in X is the element 0 € E. Since p,, is linear, X is
an als, and Vy=H. (b) Let [lx[| =o(x)+ [pu(x)l, xe X. Clearly, |||
satisfies (N,) and (Nj;). For (N,), let x;eX, i=1,2,3. We have

lxy +m(=1, x)ll = lIx1+x3 — 2pu(x3)ll = @(x;) + o(x3) + [ pulx)
= pulx)l < olxi+x; — 2pu(xy)) + lpulxi+xs — 2pu0 ) +
o(xy+x3 — 2pu(x3)) + lpulxa+x3 — 2p4()) = llxi+x, —
20u(x )+ Mlxa+x3 — 2pu(x)lt = lx;+m(=1Lx )l + lix2+

m(—1, x3)||. To show (N,), let (v,),., be a net in V,(=H) and vy,e Vy
such that v,—v,, and let xeX. Then for each ned we have
lIx = voll = @(x —v,) + [ Palx) —voll < @(x—v,)+1lim inf||py(x)—v,|| =
liminf(p(x —v,) + | py(x) —v,||) = lim inf||x —v,||. Therefore X is a nals.
(c) Let xo€E, ¢(x0)>0 and pu(x,)=0. We have X*={y|X:yeFE*
Y(x0) =0} and Vye={feX* flx,)=0}. Here X* is total over X.
(d) Ry=X. Indeed, let xeX and geV, (=H). If py(x)=g, choose
v, € Vy such that Jlo,— gl =@(x). If pu(x)# g, let v,=Apy(x)+(1—4)g
€ Vy, where A=1+ @(x)/llpy(x)— gll. In both cases v, satisfies (2.10) and
(2.11).

Lima introduced and studied the notion of a semi L-summand in a
Banach space. We recall the definition [19, Sect. 5].

3.9. DeFINITION. A linear subspace G of a Banach space E is a semi-L-
summand in E if G is Chebyshev in E (i.e., Ps(x) is a singleton for each
x€E) and |lx|| =|lx — Pg(x)|| + [ P(x)ll, x € E.

3.10. (a) Let (E, ||'||) be a Banach space and G a semi L-summand in E.
Let X be a convex cone with vertex at 0€ E such that G < X and for each
xeX\G, —x ¢ X. Let us also assume that P is additive on X. Define s, m,
and 0 as in Example 3.8 where we replace py by Pg. Then X is an als and
Vy=G. (b) For xe X let ||x|| = ||x|. Then ||-|| satisfies (N,)}-(N,).

640/43/4-4
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Let C(Q) be the Banach space of all continuous functions over the com-
pact Hausdorff space Q endowed with the sup norm.

3.11. ExampLE. (a) Let E=C([a, f]), G the subspace of E consisting
of all functions which are constant on [a, ] and X < E the set of all non-
decreasing (similarly for nonincreasing) continuous functions on [«, 8]. By
[19, Theorem 7.8] G is a semi-L-summand in E. The set X is a convex
cone with vertex at 0e E, G < X and for xe X\G we have —x¢ X. If xe X,
then Pg(x} is the constant function on [«, f] which equals (x(8) + x(«))/2.
Then it is obvious that P is additive on X. (We point out here that P is
not additive on E (see, e.g.,, [15, p. 163]). Let s, m, and 0 be defined as in
3.10(a). As we have observed there, X is an als and V,=G. (b) Let
lixll = x|l for each xe X. By 3.10(b), |||l satisfies (N,)-(N,). Now we
show that it satisfies also (N,). Let x;e X, i=1, 2, 3. Since for xe€ X, Ps(x)
is the constant function (x(B)+ x(«))/2 and x| =max{|x(a)|, |x(B)|}

we get llx, +m(—1, x3)l = lix; + x3—2Ps(x3)]| =m3x{|x1(‘x)“x3(ﬁ)|,
|x1(B) — x3(«)| }. Suppose we have

11 () ~ x3(B) < 1x1(B) — x3(a)l. (33)
If lx; +m(—1, x3)ll = x,(B)— x5(x), then since x,(a) < x,(B), we have

lxy+m(=1 x3)ll < x1(B) — xx(a) + x2(B) — x3(0) < [x:(B) — x2()]
+ 1x(B) —xs(0)] < llxy+m(—1 )l + llxy+m(=1, x3)ll. I flx, +
m(—1, x3)|| = x5(a) — x,(B), by (3.3) and since x (a)<x,(f), i=1,3, we
have —x,(a)+ x;(f) < x;(x) — x,(B), whence it follows x,(a)=x,(f) and
x3() =x3(B). Then as above, [Ix,+m(—1, x;5)ll =x3(8) —x(a) < llx, +
m(—=1, x)ll + llx;+ m(—1, x;)ll. The case |x(B) — x3(a)] < Ix,() — x3(B)|
is proved in a similar way. Consequently |- || satisfies (N,). Therefore X is
a nals. (c) Fer a <y < f define the functional £, by f,(x)= (x(B) + x(7))/2,
x€ X. Then f, € X* and f, € V.. Note that X* is total over X and for each
x € X there is f€ Sy. such that f(x)=|||x||. (d) Ry=X. Indeed, let ge V'
(=G) and x e X. We denote by g the value of the constant function g on
Lo B 1T [x(2) — gl < |x(B) — gl (resp. |x(B) — gl < |x(a) — g|), take v, e Vy
the constant function which equals x{f) (resp. x(«)). Then v, satisfies (2.10)
and (2.11).

4. BEST APPROXIMATION IN NORMED ALMOST LINEAR SPACES

Let X be a nals, G a subset of X, and xe X. We define dist(x, G) and
P;(x) by (1.3) and (1.4), where we replace | -|| by |||, keeping the same
definitions for proximinal and Chebyshev sets as in a nls. We denote
Dom(Pg)={xeX: Ps(x)# J}.
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Some simple properties of the function dist(-, G) and of the set Ps(x)
from the theory of best approximation in a nls can be extended in a nals
with similar proofs. Some other results from the theory of best
approximation in a nls can be proved in a similar way for a nals, but not in
the whole generality. One of the difficulties which appear when we want to
extend for a nals X some results which hold in a nls is due to the fact that
the function p(x, y)=|ix— yll, x, y€ X, is not a metric on X. Consequen-
tly, for some elements ge G we can get dist(g, G)#0 and Py(g)=, as
simple examples show.

41. If dist(x,G)=0 for some xeX, then xe€Vy. Indeed, Ilet
{g:}7-1<G such that ||x—g,ll 0. Then |[|x—x|I<lx—g,ll+
llg.—xll =2||x — g,ll for each n, and so || x — x|| = 0, whence x —x =0, ie.,
xeVy.

Since it is very difficult to obtain results when G is an arbitrary subset of
X, as a first step in the theory of best approximation in a nals we shall con-
sider in this section only the case when G < V. The restriction to subsets
G c Vy is of course severe, but we note that in Example 3.2 (similarly for
Examples 3.4 and 3.5) if xe X stands for the bounded, convex, nonempty
set A < E, then for any G< V', (=FE) we have

dist(x, G) =radz(4), (4.1)
Ps(x)=centg(A4). (4.2)

Consequently, any information we get on the function dist(-, G) and on the
set-valued mapping x — P;(x), when G < V', and X is a nals, are also valid
for the function rad;(-) and for the set-valued mapping 4 — centy(4), 4 a
bounded, nonempty subset of E (in view of (1.5) and (1.6)). Therefore the
theory of best simultaneous approximation in a nls is a particular case of
the theory of best approximation in a nals by elements of subsets G< V.

When G < V,, then many more notions and results from the theory of
best approximation in a nls can be formulated and proved in a similar way
for a nals, e.g., [25, Chap. 1, Theorems 6.1 and 6.5], all assertions which
do not involve a topology [8], the approximatively compact sets with the
consequence that such sets are proximinal [26, Propositions 2.1 and 3.17,
1°<«2° [ 1, Proposition 4.1]. We shall refer several times to the following
immediate (due to (N,)) result.

4.2. PROPOSITION. Let X be a nals and G a boundedly weakly compact
subset of Vy. Then G is proximinal in X.

Yost [28] introduced and studied the closed linear subspaces with the
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1i-ball property in a Banach space E and proved that they are proximinal
in E. The next proposition is a localization of this result for a nals.

Let X be a nals and J#Gc V,. Let T, be the subset of X defined in
the following way: xe T; if for each ge G and ;> 0, i=1, 2, the relations
llx—gll <ri+ry Bylx,r2)nG# & imply that By(g, ri)n Bylx, r)n
G # J. Clearly we have G 7.

4.3. PROPOSITION. Let X be a nals and G a complete subset of V . Then
for each x e Tg we have Pg(x)+# .

It follows from [27] that centy(4)# & for every bounded nonempty
subset A = C(Q), where G= {xe C(Q): x| K=0}, and K is a closed subset
of Q. The next result shows that for compact (convex) sets of C(Q) we
have (due to Proposition 4.3) a stronger property, namely, that they
belong to T, (when X is the nals described in Example 3.2 for E= C(Q)).
The fact that the sets containing exactly one point belong to T follows
from [28].

44. THEOREM. Let E=C(Q) and for KcQ, K closed, let
G={xeC(Q):x|K=0}. Then for each compact set A<E the relations
geG, g1€G,ry,r,>0, |x—gll<r,+r, for each xe A and |x—g,|<r,
for each xe A imply that there exists go€ G such that |g— goll <r, and
lx — goll < r, for each xe A.

Proof. Let H(R)={[a,b]:a,beR,a<b}, and for geQ let y(q) be
defined by

Y@= () [x(@)—ry, x(@)+r 10 [glg)—ri, glg)+r ) (43)

xeA

We show that y: Q@ — H(R). Clearly, ¥/(q) is closed and convex and so it
remains to show that y(q)# &. By hypothesis, || x — g|| <r, + r, for each
xe A and so |x(q)— g(q)| <r,+r, for each x e 4. Hence, we get

xi(q)=sup,..(x(g)—r;)<glg)+r,, (4.4)
xy(q) =1inf, . 4(x(q)+r;) > glq)—r,. (4.5)

Then x,(gq) < x,(q) since otherwise, by (4.4) and (4.5) there exist x, ye 4
such that y(g)+r,<x(q)—r, and so 2r,<x(q)—y(g) =

(x(q)— g:1(@) + (g1(q) — ¥(q)) < llx—gill +1ly—gill < 2r,, which is not
possible. Then

Y(g)=[x1(q), x2(0) 1N [glg)—ry, glg)+ry] (4.6)
and by (4.4) and (4.5) it follows Y(q) # .
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We show now that y: @ — H(R) is lower semicontinuous (Isc) (for the
definition of Isc see, e.g., [25]). Let g, Q and (c,d) an open interval
such that Y(go)n(c, d)# & Let agey(gy)ni(c,d) and let 0<e <
min{a,— ¢, d—a,}. Since 4 is compact, the functions x, and x, defined by
(4.4) and (4.5) are continuous. There exists a neighbourhood U(g,) such
that

[xi(g)—xi(go)l <&, g€ U(qo), (4.7)
Ix2(q) — x2(q0)l <&, g€ Ulqo), (4.8)
lg(q)— gl(go)l <&, g€ Ulqo)- (4.9)

We show that y(q) N (¢, d) # I for each g€ U(q,) which will prove that
¥ is Isc. Suppose Y (q) N (¢, d)= & for some g e U(g,). Then we have either
a < ¢ for each a e y(q) or d<a for each ae(q), say the former (the proof
for the latter case is similar). Then by (4.6) we have either x,(g) e ¥/(q) or
g(q)+riey(q). If x,(q)ey(q), then by our assumption x,(g)<c¢, and by
(48) we get x,(go)<xs(g)+e<c+e<c+(ag—c)=0a, which is not
possible since a e(g,). If g(g)+riey(q), then g(go)+r <
glg)+r, +e<c+e<a, which is not possible since ag €y (g,).

If geK, then Oey(qg). Indeed, if ge K then for each xe 4 we have
Ix(¢)| = |x(q) — gi{@)| < lix— gl <rp, and so —r;<x(g)<r,. Then by
(4.4) and (4.5) we get x,(q) <0 and x,(¢) =0, whence 0 € y(g) follows now
by (4.6) since g(gq)=0.

Define #: Q — H(R) by

¥lg), q¢Kk
Then 5 is Isc and by Michael’s theorem [22] there exists g, C(Q) such
that go(g)en(q),ge Q. For ge K, go(q)=0, ie, goeG. Since for each
g€ Q, go(g)ey(q), by (4.3) we get | g — goll <r, and [x — g, <r, for each
x € A, which completes the proof.
Let us recall the following definition [2, Definition 1.17.

4.5. DeFINtTiON.  The nls E is said to be strictly convex with respect to
its linear subspace G if the conditions x, ye E, | x| =yl = ll(x+ »)/2|| = 1,
x— yeG imply that x=y.

In the results 4.64.9 we shall use the set R,{G) defined in 2.12. The next
theorem generalizes results on best simultaneous approximation contained
in [15, p. 188; 4, 2, 24].

4.6. THEOREM. Let X be a nals and G a linear subspace of Vy. If V is
strictly convex with respect to G, then for each x € Rx(G) the set Pg(x) con-



350 G. GODINI

tains at most one element. If in addition G is reflexive then for each
x € R,(G) the set Py(x) is a singleton.

Proof. Let xe Ry(G) and suppose there exist g,, g,€G such that
llx — gl =dist(x, G), i=1,2. Then ||x— (g, + g2)/2|| =dist(x, G). Since
x€ R(G), for the element (g,+ g£,)/2€G there exists voe Vy such

that |lx—(g,+ £2)/2l = llvo— (g1 + £2)/2ll, and [lx— gl = llvo — &ill,
i=1,2 Then dist(x, G) = [lvo— (g1 + &2)/2/l < (lllvo — &:lll +
llvo — g2I1)/2 < dist(x, G), and s0 llvo— gill = llvo — gl =
lloo~ (g1 + g2)/2ll. Since (vo—g,)—(vo—g2)=8,—8:1€G and Vy is
strictly convex with respect to G, it follows that g, = g,. If G is reflexive
then by Proposition 4.2, G is proximinal in X, which completes the proof.

Let X be a nals and @ # G < V. We shall assign to each xe R,(G) a
nonempty subset Dg(x)< Vy in the following way. For ge G let D,(x) be
the set of all v, e V satisfying (2.10) and (2.11). Since x € Ry(G), the set
D,(x) is nonempty. Let us set

Dg(x)= U Dg(x)5 D(x)':DVX(x)'

gel
477. LEMMA. Let x€ Ry(G) and g€ G. Then for each v, € D (x) we have

llx—gll = llvog — gl =sup, e peex v — £l (4.10)

Consequently, the set Dg(x) is a nonempty, bounded subset of Vy, which is
remotal with respect to G. If xe V, then Dg(x)= {x}.

Proof. Let xeRy(G),geG and v,eD,(x). By (2.10) we have
lix~ gll = llvg— gll. Let ye Dg(x). By (2.11) we have [ix —gll >[Iy — Il
Therefore v, — gll = llx—gll > ly — gll. whence (4.10) follows since
v,€Dg(x). Let now xeVy (cRy(G)) and vye Dg(x). By (2.11) for
v=xeV, we have 0= ||x — x| = [lve — x|, L.e., X =1q.

4.8. THEOREM. Let X be a nals, J# G, cGc Vy and let x€ Ry(G). We
have

dist(x, G,)=radg,(Ds(x)), (4.11)
P (x)=centg,(Dg(x)). (4.12)

Proof. Let g,€G,. Since x€ Ry(G) and G, = G, by Lemma 4.7 we have

X — gl =sup, e peeo ll y — &1l

whence (4.11) follows by taking the infimum in both sides over all g, € G,.
The proof of (4.12) is an immediate consequence of (4.10) and (4.11).
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49. CorOLLARY. Let X be a nals and & # G < Vy such that Ry(G)=X.
Suppose that for every nonempty bounded set A <V we have centg(A) # &
(centg(A) a singleton). Then G is proximal (Chebyshev) in X.

Borwein and Keener [3] examined the relationship between the
Hausdorff distance between convex closed sets in a nls and the distance
between their Chebyshev centers. Now we can assign to any x € R the set
€0 D(x) and by (1.5) and (1.6), formulas (4.11) and (4.12) hold for co D(x)
as well as for D(x). Then some consideration of {37 can be used together
with Theorem 4.8, to obtain information for a nals X.

We conclude this section by introducing the quotient space X/G, where
X is a nals and G a closed linear subspace of Vy.

First, let X be an als and G a linear subspace of V', and let X/G= {%=
x+G:xeX}. Clearly £=p iff x=y+ g for some ge G. (Simple examples
show that this is no longer true when G is an arbitrary almost linear sub-
space of X.) As in the case when X is a Is, we can define s(%,, £,), 0 and
m(4, %). It is easy to show that X/G together with s: X/G x X/G — X/G and
m: Rx X/G — X/G is an als. Here we have Vy ;= V,/G.

Now suppose X is a nals and G a linear subspace of V. Let us define for
X e X/G,

%] =dist(x, G), (4.13)

where x e £. Since dist(x + g, G)=dist(x, G), g€G, [|£]| does not depend
on the choice of x e 2.

4.10. THEOREM. Let X be a nals and G a closed linear subspace of V.
Then X/G is an als and || || defined by (4.13) satisfies (N, )}~(N,). It satisfies
(Ny) if dim V /G < o0 or Vy is reflexive.

Proof. As we have observed above, X/G is an als, and it is easy
to prove that (N,) and (N;) hold. To show (N,), let %,€X/G,
x;€%;, i=1,23 and let £¢>0. By (4.13) there exist g, g,€G
with  [lx, —x;— gl <dist(x; —x3,G)+¢  and  |lx;—x,— gl <
dist(x; — x,, G) + & Then ||£, — £,| = dist(x, — x,, G) < |[{x, — g,) —
(x2+ 2l < lixi—gi—x3ll + llxs—x2—goll < dist(x, -x3,G) +
dist(x;—x;, G) +2¢ = [|£; — %[l + [[£;— %, [l + 2¢, whence (N,) follows.

To show (Ny), let {#,},c4,0 be @ net in V4/G (=Vy,) such that
#,—~0,, and suppose there exists £e X/G such that liminf||£—6,|| <
lI£~0oll. We can suppose (passing to a subnet) that [|£—46,| <
a<||®—=boll, ne 4. Let xe% and v,€d,,ne 40U {0}. Then by (4.13) there
exist g,€ G, ne 4 such that

x—v,— g.ll <a<dist(x —vg, G), ned. (4.14)
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Suppose dim V,/G < co. Then 6, — 6, and so there exist g, € G,
ne 4 such that v,— g, —»v,. For sufficiently large n, ||v,— g,—voll <
dist(x—vy, G)—a and  so  [Ix—vo—g,~ &Ml < llx— g, —v,ll +
lv, — vo— gl <dist(x — vy, G), which is not possible.

Now suppose Vy is reflexive. By (4.14) it follows that {v,+ g,},c4 is
bounded in ¥V, and so we can suppose (passing to a subnet) that
v,+ g,—v. Then 9,—? and since §,—~5, it follows v=v,+ g for some
geG. Then jlx—vo— gl €liminfljx—v,— g,ll <a<dist(x — vy, G),
which is not possible. Therefore X/G is a nals if dim V',/G < oo or Vy is
reflexive. We do not know whether these assumptions are or not super-
fluous.

5. STRONG NORMED ALMOST LINEAR SPACES AND APPLICATIONS

Let X be a nals and suppose there exists a semi-metric p on X (ie., p
satisfies all the axioms of a metric except for p(x, y)=0 implies x= y,
x, y€ X), which satisfies (M;)}-(M;) below. Let x, y,ze X and AeR.

(M) Ll =Wyl < plx p) < llx =yl (M2) plx + 2, y + 2) < p(x, y);
(M) The function 4 — p(4x, x) is continuous at 1= 1.

5.1. DEFINITION. A strong normed almost linear space (snals) is a nals X
together with a semi-metric p satisfying (M )}-(M,;).

52. (a) For x, ye X and ve Vy we have

p(x+v, y+0v)=p(x, y), (5.1)
p(x,v) = [lx—u]l. (5.2)

Indeed, by (M,) we have p(x+v,y+v) < plx,y) =
p((x+v)—v, (y+v)—v) < p(x+v, y+v), ie, (51). Hence p(x,v)=
p(x—v,0) and by (M,), ||x—v|l < p(x—v,0)< |Ix —0vll, ie., we have (5.2).
(b) When X is a nls, by (5.2) it follows that the only semi-metric satisfying
(M, )~(M) is that generated by the norm. (c) By (5.1), to approximate xe X
by elements of a subset G Vy in the norm ||| is the same as to
approximate it in the semi-metric p. Since in this section we have also results
concerning arbitrary G < X, we draw attention that in the sequel dist(x, G)
and Ps(x) are given by (1.3) and (1.4) for ||-{l.

We shall give now examples of snals.
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5.3. ExaMPLES. (i) Let X be the nals given in one of the Examples 3.2,
3.4, or 3.5. For A;, A,€ X let p(A4,, A,) be the Hausdorff semi-metric, i..,

p(4,, Ay)=max{sup,, . 4 dist(a,, 4,), SUp,,. 4 dist(a,, 4,)}.

It is straightforward to show that p satisfies (M,)}-(M3). Notice that in
Examples 3.4 and 3.5, p is a metric on X.

(ii) Let X be the nals given in Example 3.6, and for x,, x,€ X, let
p(xq, x;)=|x; —x,| (here x, —x, is understanded in E). Since E is an
(AL)-space, we have |[Ixll —llx,ll | =[xl =lx2l | < Ixi—xf <
I+ Il = flx; +m(—1, x,)]f, ie., p satisfies (M,). It is obvious that it
satisfies (M,) and (M;). Here p is a metric on X.

(iii) Let X be the nals given in Example 3.7, and for x,, x,€ X, let
p(xy, X,)=]@(x;)— @(x,)|. Then p is a semi-metric on X which satisfies
(M )H(M3).

(iv) Let X be the nals given in Example 3.11 or in Example 3.8 when
H is a semi L-summand in E. Then in both cases we have ||x|| = | x|| for
each xeX. For x,x,eX let p(x,,x;)=|x;—x,|| (here x,—x, is
understood in E). Then p is a metric on X satisfying (M, )}(M;). Since
(M,) and (M) are obvious, we show (M,) for Example 3.8 (the proof for
Example 3.11 being similar). Let x;, x,€ X. Then ¢(x;) = o(x;— pu(x;)
= |x;— pa(x)l; i=1,2,and so p(x,, x;) = [x; — x5/l < [|x1— paulx))l +
[Pr(x1) = Pl + [ pu(x2) = X2/l = @(x1+x3) + [[pulx)) + pulx,—

200 = @(xy+m(—1,x)) + lpulxi+m(=1Lx))| = llx; +
m(—1, x,)||. For the other inequality in (M,) we use the assumption that
H is a semi L-summand in E. We have | [[x [l — lx2ll [ =] 1x 0 = x| <

Xy = xall = plxy, x3).

Some other examples of snals can be obtained using Theorems 5.4 and
5.7. The first one states that the dual space of a nals (not necessarily a
snals) is always a snals, and the second one states that when X is a snals
and G a closed linear subspace of V,, then in the space X/G (not
necessarily satisfying (N,)) there exists a semi-metric satisfying (M, )~(M;).

5.4. THEOREM. For any nals X, the dual space X* is a snals for the
metric p defined by

p(f1, f2) =sup{l/i(x) = fa(x)l: x€ By} (fi, f€ X*)

Proof. Clearly p is a metric on X. To prove (M,), let 1, f,€ X* and
x€By. Then |fi(x)l<|fi(x)=fox)+1fa(x)<p(f1, 1)+ If2ll, and
since xe B, was arbitrary, it follows || f;ll <p{(f1,/f2)+ lS>ll. Similarly
20 < p(fi, f2)+ ILfill, whence the first inequality in (M,) follows. For
the other inequality, let xe By. By (2.6) we have that fi(x)— f5(x)<
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[ixX)+ fo(=x) = (fi+ (=1 f2))x) < Ilf1+ (=10 f)ll. Similarly f5(x) —
A+ (~ 1o fy)ll. Hence for each x € By we have |£,(x) ~ f2(x)| <
l.fi + (—1ef3)|l whence the right-hand side inequality in (M,) follows.

To prove (M,), let fieX* i=1,2,3. Then p(f;+ /s, fo+/f3)=sup
{I(fi + 3)(xX) = (2 + f3)(X)]: x € By} = p(f1, [2)-

Finally we prove that for each fe X*, the function 4 — p(4¢o f, f) is con-
tinuous at any A> 0. Indeed, for A>0 we have p(Aof, f)=sup{|f(ix)—
S(x)|: xe By} =|A—1}||fll. Therefore X* is a snals, which completes the
proof.

In the sequel the folowing result will be of use.

5.5. LEMMA. Let X be a snals, 3 #Gc X and x, ye X. We have
|dist(x, G) — dist(y, G)| <p(x, y).

Proof. Let ¢>0 be given and let geG such that {|ly—gll <
dist(y, G)+¢ By (M;) and (M,) we get dist(x, G)—dist(y,G) <
ix—gll—lly—gll+e < plx—g y—g)+te < p(x,y) + e Similarly,
dist(y, G) —dist(x, G) < p(x, y)+¢, whence |dist(x, G)—dist(y, G)| <
p(x, y) +¢, and the lemma follows.

5.6. COROLLARY. Let X be a snals, G X and x, ye X such that
p(x, y)=0. Then dist(x, G) =dist(y, G) and Ps(x)= Ps(y).

Proof. By Lemma 5.5 we get dist(x, G) =dist(y, G). Now let ge Ps(x).
Then 0<|ly—gli—dist(y,G) = lly—gll —dist(x,G) = |ly—zgll-
llx—gll < p(y—g x—g) < p(y,x)=0 and so ge Pg(y), ie, Ps(x)c
P;(y). The other inclusion is proved in a similar way.

5.7. THEOREM. Let X be a snals with the semi-metric p and G a closed
linear subspace of V. Then p defined for %,, X, € X/G by

ﬁ('QUXZ):infger(xl-l_g’ x2) (xie-)ei’i=1’ 2) (53)

is a semi-metric on X/G satisfying (M )-(M,;).

Proof. We first observe that since p satisfies (5.1), the definition of
p(R, %,) in (5.3) does not depend on the choice of x;ex,. Clearly if
£, =2%,, then for xe £,, i=1, 2 we have by (5.3) 4(%,, £,) < p(x, x)=0, ie,
p(R,, £,)=0. By (5.1) for p we get p(%,, £,) = p(X,, £;). Now let £,€ X/G
and let x,e%;, i=1,2,3. Then for any g,, g,€ G we have p(%,, £3)<
p(xy+ &1, X3+ g2) <p(xy + g1, X2) + p(x2, X3+ g,), whence since g, g,
were arbitrary in G, it follows that A(R, £;) < p(X,, £5) + H(X,, %3).
Therefore p is a semi-metric on X/G.



NORMED ALMOST LINEAR SPACES 355

To show (M,) for p, let %,€eX/G, x;e%;, i=1,2, and geG. By
Lemma 5.5 we have |[|%,]|—I%.ll] = |dist(x,, G)—dist(x,, G)} =
|dist(x, + g, G) —dist(x,, G)] < p(x,+ g, x,), whence since ge G was
arbitrary, we get |[I£,l —lI£.M1 < p(£;, %5). Now p(£,%,) <
plx;+g x;) < [lx;—x,+gll and so p(%,, £,) < dist(x; —x,,G) =
£, — £,|l which proves (M,).

To show (M,), let £,€ X/G, x;e%,;,i=1, 2,3, and ge G. Then j(£; + £,
X+ £3)<p(x + x5+ g x,+x3) < p(x; + g, x,), whence (M) follows.

Finally, to show (M,) let £eX/G and xe% We have by (5.3),
p(A%, £) < p(4x, x) and since p(ix, x) - 0 for A > 1, we obtain (M;) for g,
which completes the proof.

In a snals X the semi-metric p generates a topology on X (which is not
Hausdorff in general) and in the sequel when we shall say that a set is
closed, open, etc., we shall understand that in this topology. If we need this
topology to be Hausdorff, then we assume p to be a metric on X. In view of
5.2(b), the topology on the nls ¥V, generated by p is the same as the
topology generated by the norm |- ||.

5.8. In a nals X the set By(x,r) is closed. Indeed, let {x,}*_,< X such
that ||x,— x| <r, n21, and p(x,, xy) > 0. By (M,) and (M,) we have
llxo — xll — llx, — X[l < p(xo — X, X, — x) < p(Xo, X,) and so ||xo— x| <
r+ p(xg, x,)—r.

59. Let X be a snals and Gc X. (a) Let xe X, ye Dom(P;) and
g€ Ps(y). By (My), (M,) and Lemma 5.5 it follows that

llx — gll < dist(x, G) + 2p(y, x). (5.4)

Consequently, if {x,}>_,=Dom(Pg;) and x€ X are such that p(x,, x) -0,
and g, € Pg(x,), then

lim||x — g, || =dist(x, G). (5.5)

(b) For go€G, the set P5'(go)={xeX: go€ Ps(x)} is closed. If G is
a linear subspace of V., then P;'(g,) is a cone with vertex at g,.

In the framework of a snals X, we can discuss the continuity (semi-
continuity) properties of the set-valued mapping x — Pg(x). That will be
done from now on. The results are known either for best approximations in
a nls or for best simultaneous approximations in a nls, We use the follow-
ing abbreviations: uKsc for upper Kuratowski semicontinuous, usc (Isc) for
upper (lower) semicontinuous. We draw attention to the fact that we use
these semicontinuity properties in a slightly more general framework than
in [25, 26], but the definitions are the same.
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5.10. ProPoSITION. Let X be a snals and G < X.

(i) If G is closed, then P is uKsc at any x e Dom(Pyg).
(i) If GeVy, then Pg is both usc and Isc at any g€ G.

(it1) If G is a closed subset of V and span G is finite-dimensional,
then P is usc on X.

Proof. (i) Let xe Dom(Pg) and let x,€ X such that p(x,, x) — 0. Let
gn€ Ps(x,) and ge G with p(g,, g) > 0. By (5.5) we get lim||x— g,/ =
dist(x, G). By (M) and (M,) we have flg—x|l—llg,~xll < p(g—x,
g,—x) < p(g, &), whence [|x— gl =dist(x, G), ie., g€ Pg(x).

(ii)) Use Lemma 5.5.

(ili) By Proposition 4.2, G is proximal in X. To show that P is usc,
use (i) above and the hypothesis on G.

We recall [15, p. 146] that a Banach space B is an E-space if B is
reflexive, strictly convex, and x,, xe Sg, x,—x imply x, - x.

5.11. THEOREM. Let X be a snals and suppose that V y is an E-space. Let
G be a closed linear subspace of Vy. Then P is both lsc and usc at any
x € Ry(G).

Proof. By Proposition 4.2, G is proximinal in X. Let xe R,(G). By
Theorem 4.6, Pg(x) is a singleton, say, Pg(x)={g,}. By
Proposition 5.10(ii) we can suppose x¢G. Let {x,}*_ , <X such that
p(x,, x)— 0, and let g, € Pg(x,). Then the sequence {g,}=_, is bounded in
Vi, since [ig,ll <2[Ix,ll =2p(x,,0)<2(p(x,, x) + p(x, 0)). Since Vy is
reflexive and Pg(x) = {g,}, by N, and (5.5) we get g, — g,. By hypothesis,
x € Ry(G) and so for g, G there exists voe Vy such that

llx — goll = llvo — goll, (5.6)
llx—gall = llvo— gall,  neN. (5.7)

Let {g,}<c{g,} with limsup|lv,—g,ll =lim|lvo—g,ll. We have
Vo— g,—Vo— &0, and by (5.6), (5.7), and (5.5) we get dist(x, G) =
lIx—goll = Hvo—goll < liminflloo—g,ll < limsupfloo—g.ll =
limflvo—g,l < liminfllx—g,|l = dist(x, G). Therefore [vo— g,ll -
llvo — golll, and since V' is an E-space it follows that v, — g, — vo— go and
S0 g, — go- Since g, € Ps(x,) were arbitrary, it is now immediate that P is
both usc and Isc at x € R (G).

We conclude this paper mentioning that we have also extended for a
snals, the following results from the theory of best (or best simultaneous)
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approximation in a nls: [13, Corollary 1; 14, Theorem 1; 17, Proposition;
20, Theorems 2 and 3; 21, Theorems 5 and 6]. The formulations and
proofs will be given elsewhere.
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