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1. INTRODUCTION

Let E be a normed linear space (nls) over the real field Rand G a non­
empty subset of E. For a bounded set AcE let us define

raddA)=infgEGsuPaEA Iia-gll, (1.1)

cent(;(A) = {go EG: SUPaE Alia - goll = radG(A)}. (1.2)

The number radG(A) is called the Chebyshev radius of A with respect to G,
and an element go E centdA) is called a best simultaneous approximation
(or a Chebyshev center) of A with respect to G. When A is a singleton, say
A = {x}, x E E, then radG(A) is the distance of x to G, denoted by
dist(x, G) and defined by

dist(x, G)=infgEG Ilx- gil (1.3)

and centG(A) is the set of all best approximations of x out of G, denoted by
PG(x) and defined by

PG(x) = {goEG: Ilx- gall =dist(x, G)}.

It is well known that for any bounded set AcE we have

radG(A) = radG(co A) = radG(A),

centG(A) = centG(co A) = centG(A),

(1.4 )

(1.5 )

(1.6)

where co stands for the convex hull. Therefore the assumption on the
bounded set A to be convex (or (and) closed) is not a restrictive one.

A systematic study of the sets defined by (1.2) when G = E was initiated
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by Garkavi [10-12] and the problem attracted much interest. At present
many results are known on the existence and unicity of the elements of best
simultaneous approximations, as well as on the continuity (semicontinuity)
of centG .

In this paper an attempt is made to obtain the natural framework for the
theory of best simultaneous approximation in a nls, and we show that the
normed almost linear space (nals) and the strong normed almost linear
space (snals}-which are introduced in this paper-constitute this natural
framework. These spaces, which might be of independent interest,
generalize the normed linear spaces. To support the idea that the nals is a
good concept, we introduce the concept of a "dual" space of a nals X,
where the functionals on X are no longer linear but "almost linear," which
is also a nals. When X is a nls, then the "dual" space defined by us is the
usual dual space X*.

Roughly speaking, a nals is a set X together with two mappings
s: X x X -+ X and m: R x X -+ X, which satisfy some of the axioms of a
linear space (Is), and on the set X there exists a functional III' III :X -+ R
which satisfies all the axioms of an usual norm on a Is, as well as some
additional ones (which in the case of a nls are consequences of the axioms
of the norm). Denoting, as in the case of a Is, s(x, y) and m(A, x),
(x, Y E X, AE R) by x + y and Ax (and also m( -1, x) by -x), then for a
subset G c. X we can define (1.3) and (1.4) replacing II' II by III' III. Con­
sequently, we can try to develop in a rials, a theory similar with that of the
theory of best approximation in a nls.

Among the properties of a Is which is not supposed to hold in a nals X is
the following: for each x E X there exists - x E X such that x + (- x) = 0
(though there exists an element 0 in the nals X such that x + 0 = x for each
x E X). By the axioms of a nals, it follows that the set Vx = {x E X:
x + (- x) = O} is a Is, and we show that the theory of best simultaneous
approximation in a nls is a particular case of the theory of best
approximation in a nals X by elements of subsets G c. Vx.

In contrast with the case of a nls, the III . III of a nals X does not generate
a metric p on X. (As a matter of fact, p satisfies all the axioms of a metric,
except for p(x, x) = 0 for each x E X). Consequently, in a nals X we cannot
discuss the continuity (semicontinuity) properties of the (set-valued) mapp­
ing x -+ PG(x). That is why we introduce the concept of a snals which,
roughly speaking, is a nals X together with a semi-metric p on X which is
related in a certain way with the III . III of X.

In the framework of a nals (snals) we can try to extend the following
types of results: (1) general results from the theory of normed linear spaces;
(2) results from the theory of best approximation in a nls; (3) results from
the theory of best simultaneous approximation in a nls. In this paper we
begin such a study and we hope that other results will be extended.
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We recall that another approach, completely different from ours, for the
theory of best simultaneous approximation, was investigated in [23, 18,9].

All spaces involved in this paper are over the real field R.

2. NORMED ALMOST LINEAR SPACES

An almost linear space (als) is a set X together with two mappings
s:XxX~X and m:RxX~X satisfying (Ld-(Ls) below. For x,yEX
and AER we denote s(x, y) by x + y, m(A, x) by Ax and -Ix by -x, when
these will not lead to misunderstandings, and in the sequel x - y means
x+(-y). Let x,yzEX and A,IlER. (Ld(x+y)+z=x+(y+z);
(L 2 ) x + Y = Y + x; (L3) There exists an element 0 E X such that x + 0 = x
for each x EX; (L4 ) Ix = x; (L s) Ox = 0; (L6 ) A(X + y) = Ax + Ay;
(L 7 ) A(IlX) = (All) x; (Ls ) (A+Il)X=Ax+IlX for ).~0,1l~0.

2.1. If X is an als then: (a) The element 0 in L 3 is unique. (b) AO = 0 for
each AER. (c) For each XEX and A~O,Il~O,(A+Il)X=Ax+IlX. (d) If
x E X is such that x - x = 0, then (A + Il) x = Ax + IlX for all A, Il ER.

2.2. DEFINITION. (a) A nonempty set Y of an als X is called an almost
linear subspace of X, if for each y 1, Y2 E Y and AER, s(y 1, Y2) E Y and
m(A, yd E Y. (b) An almost linear subspace Y of X is called a linear sub­
space of X if s: Y x Y ~ Yand m: R x Y ~ Y satisfy all the axioms of a Is.

For an als X we introduce the following sets:

vx = {x EX: x - x = 0},

Wx ={XEX:X= -x}.

(2.1 )

(2.2)

2.3. (a) The set Vx is a linear subspace of X, and it is the largest one.
The als X is a Is, iff Vx = X. (b) The set Wx is an almost linear subspace of
X, Wx = {x - x: x EX} and Vx n Wx = {O}. The als X is a Is, iff Wx = {O}.

Convex sets and cones in an als are defined as in a Is.
A norm on an als X is a functional 111'111: X ~ R satisfying (N l-N4) below.

Let x, y, zEXand AER. (Nd Illx-zlll ~ Illx- ylll + Illy-zlll; (N 2 ) [II Axlll =
121 IIlxlll; (N 3) Illxlll = 0 iff x = O. By (N 1) we get

Illx+ ylll ~ IIlxlll + IIlylll· (2.3 )

By 2.3 (a), Vx is a Is and so (Vx, 111'111) is a nls. Therefore the weak con·
vergence (denoted by ->0.) can be defined in Vx' (N4 ) If {v n } nEd is a net in
Vx, v E Vx, Vn->0. v, then for each x EX, IIlx - vIII ~ lim infllix - vnlll·
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2.4. For each XEX, Illxlll ~o (use (Nd and (N 2 ).
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2.5. DEFINITION. An als X together with 111'111: X --+ R satisfying (Nd­
(N4 ) is called a normed almost linear space (nals).

For XEX and r>O let Bx(x, r)= {YEX: Illy-xiii ~r}. Then Bx(x, r) is
a convex (possibly empty) subset of X. We denote Bx = B AO, 1) and
Sx= {XEX: Illxlll = I}.

2.6. If X is a nals, X # Vx, then p(x, y) = Ilix - ylll, x, y E X, is not a
metric on X since p(x, x) # °for x ¢ Vx. By 2.4, (N2), (N I), and 4.1 in Sec­
tion 4, p satisfies all the other axioms of a metric.

Our next aim is to introduce the concept of a dual space of a nals, which
we would like to be a nals also.

2.7. DEFINITION. Let X be an also (a) A functionalf X --+ R is called an
almost linear functional if (2.4}-(2.6) hold:

f(x+ y)=f(x)+ f(y)

f(h) = if(x)

- f( -x) ~f(x)

(x, yEX),

(A. E R, A. ~ 0, X EX),

(XE X).

(2.4 )

(2.5)

(2.6)

(b) A functional f X --+ R is called a linear functional if (2.4) and
(2.5) hold for all x, yEX and A.ER (hence (2.6) is also satisfied).

Let X# be the set of all almost linear functionals defined on the als X.
For f, fl,f2 E X# and A. E R let S(fI,f2) and m(A.,f) be the functionals on
X defined by S(fI,f2)(X)=fl(X)+f2(X) and m(A.,f)(x)=f(h),xEX.
Then s: X# x X# --+ X# and m: R x X# --+ X# satisfy (Ld-(Lg ), where°E X# is the functional which is °at each x E X. Therefore X# is an also
Note that for each fEX#,f(O)=O and the restriction fl Vx is a linear
functional on Vx. We shall denote S(fI,f2) by fl + f2 and m(A.,f) by A. 0 f

2.8. Let fEX#. (a) fE Vx# iff f is linear on X, iff -l o f= -f, iff
fl W x= 0; (b) The functional h on X defined by h(x) = f(x) - f( -x), X E X,
belongs to Vx# ; (c) If f ¢ Vx#, then for the functional
h = f +(- 1of) E W x# we have that h IVx =0 and h # O.

When X is a nals, for f E X# define, as in the case of a nls,

Illflll =sup{lf(x)l:xEBx }.

Let X* = {J E X#: IlIflll < 00 }.

(2.7)
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2.9. THEOREM. X* together with 111'111 defined by (2.7) is a nals.

Proof It is easy to show that (2.3), (N2) and (N3) hold, so X* is an also
We show now N I , i.e., that for fiEX*, i= 1, 2, 3, we have

Let x EBx . Then lUI + (-1 0 f3))(x)1 = Ifl(x) + f3( -x)l. If lUI +
(-1 0 f3))(x)1 = - fl(x) - f3( -x), then by (2.6) we get

lUI + (-1 0 f3))(x)1 = - fl(x) - f3( -x)

~fl( -x) + f2(X) + f2( -x) + f3(X)

~ IUl + (- 10 f2 ))( - x) I+ IU2 + (- 1 0 f3 ))( - x) I

~ Illfl + (-1 0 f2)111 + IIIf2 + (-1 0 f3)111·

Similarly we can show that the same conclusion holds if lUI + (- 1 0 f3))
(x)1 = fl(x) + f3( -x), whence (2.8) follows.

It remains to prove (N4 ). Let (qJn)nELl be a net in Vx' and qJoE Vp such
that qJn -->- qJo· Let x E X and let Fx be the functional on V x. defined by
FAqJ) = qJ(x), qJ E VX" By 2.9(a), qJ is a linear functional on X and so Fx is
a linear functional on Vx•. Since IllFxlll ~ Illxlll, we have FxE(Vx')*' Since
qJn-->-qJO' it follows that lim qJn(x) = qJo(x). Let now fEX* and xEBx . We
have IU + (-1 0 qJo))(x)1 = If(x) + qJo( -x)1 = lim IU + (-1 0 qJn))(x)1 ~
lim infilif + (-1 0 qJn)lll, whence (N4 ) follows.

2.10. DEFINITION. The space X* together with 111'111 defined by (2.7) is
called the dual space of the nals X.

Clearly, when X is a nls, then the dual space defined above is the usual
dual space of X. That is why we did not change the notation and ter­
minology.

2.11. DEFINITION. An almost lineat subspace r of the dual space X* of
a nals X is said to be total over X if the relations Xl> X2 E X,j(xd = f(X2)
for each fEr imply that x I = X2'

As we shall show by examples given in the next section, the dual space of
a nals X may be not total over X. As a matter of fact, we do not know
whether x* might be only the single element O.

For x E X let Qx be the functional on x* defined, as in the case of a nls,
by

QxU) = f(x) (f E X*). (2.9)
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Then Qx is an almost linear functional on x* and IIIQxlll:::; Illxlll, i.e.,
QXEX**. In contrast with the case ofa nls, here X** (as well as X*) may
be very poor (see the next section).

We conclude this section by defining some subsets of a nals X which will
be used in Sections 4 and 5. For examples, see the next section.

2.12. Let X be a nals and let 0 i= G c Vx. We define R x(G) c X in the
following way: xERx(G) if for each gEG there exists VgE Vx such that
(2.10) and (2.11) hold:

Illx- gill = Illvg- gill, (2.10)

Illx-vlll ~ Illvg-vlll for each VE V X . (2.11)

We have VXC R x(G). If G, C G2, then R x(G2) c R x(G,). We denote by R x
the set Rx(Vx ). When X is a nls, then Rx=X.

3. EXAMPLES

In Examples 3.2, 3.4-3.8, and 3.11 we exhibit normed almost linear
spaces which are not normed linear spaces. We recall the following
definition (see, e.g., [24]).

3.1. DEFINITION. Let G be a nonempty subset of the nls (E, 11'11) and let
C be a bounded subset of E. The set C is called remotal with respect to G if
for each gE G there exists CgE C such that SUPCEC Ilc- gil = Ilcg- gil.

3.2. EXAMPLE. (a) Let (E, II' II ) be a nls and let X be the collection of all
bounded, convex, nonempty subsets A of E. For A, A j, A 2 EX and AER,
define s(Aj,A2)=A,+A2={a,+a2:a,EA"a2EA2} and m(A,A)=
AA = {Aa: a EA }. The element 0 in X is the set {O}. Then X is an als and
Vx={{v}:vEE}(=E). (b) For AEX, let IIIAIII=suPoEAllall. It is
straightforward that 111'111: X --+ R satisfies (N d-(N4 ) and so X is a nals.
(c) For each cpEE* there isf", EX*, Illf", III = Ilcpll. Indeed, take

(A EX). (3.1 )

For each cpEE* there is h",E Vx" Illh",111 = Ilcpll. Indeed, take h",(A)=
(f",(A) - f",( - A))/2, A EX, where f", is defined by (3.1). Unfortunately we
do not have a complete description of X* and Vx', Now let A EX, where A
is remotal with respect to G = {O}. Then there exists f ESxo such that
f(A) = IIIAIII. Indeed, let aoEA, IIIAIII = Ilaoll and let cpESp , cp(ao) = Ilaoli.
Then for the functional f", defined by (3.1) we have IIlf", III = 1 and
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f<p(A) = lilA III· (d) Let G be a nonempty subset of E. If A E X is remotal with
respect to G, then AERx(G) (for gEG choose vgEA with
sUPaEA Iia - gil = Ilvg - gil; then vg satisfies (2.10) and (2.11 )). The converse
is not always true, as the following example shows.

3.3. EXAMPLE. Let E = c (equals the Banach space of all convergent
sequences endowed with the sup norm) and let G = {O}. Let AcE be the
set of all elements a = (an), where lim an =0 and lanl ~ 1 - n -I, n E N. Then
A E X and A is not remotal with respect to G. For the only element 0 in G
let Vo= (fJn)EE, where fJn= I-n-t, nEN. Then IIIAIII = Ilvoll = 1, and
IliA - viii ~ Ilvo - vii for each vEE, i.e., A E Rx(G).

3.4. EXAMPLE. (a) Let (E, 11'11) be a nls and let X be the collection of all
bounded, closed, convex, nonempty subsets A of E. Let 0 E X, m and 111'111
be defined as in Example 3.2 and define s(AI,A2)=AI+A2,Aj,A2EX.
Then X is a nals, and we can repeat word for word what was said in Exam­
ple 3.2. (b) We can show that X* is total over X. Indeed, let AI' A 2 E X
such thatf(Ad=f(A 2) for eachfEX*. For AEXwe have

A = n {v EE: inf cp(A) ~ cp(v) ~ sup cp(A)}. (3.2)

Now let cpESE. and letf<pEX* be defined by (3.1). By hypothesis, we have
f<p(Ad=f<p(A 2) and (-l o f<p)(Ad=(-l o f<p)(A 2), whence supcp(Ad=
supcp(A 2 ) and infcp(Ad=infcp(A2). By (3.2) we obtain that A 1 =A 2.
Hence the mapping Q: X -+ X** defined by (2.9) is injective. Here, we do
not know an example of an FE X* *, F -# Qx for each x E X.

3.5. EXAMPLE. (a) Let (E, 11'11) be a nls and let X be the collection of all
compact, convex, nonempty subsets of E. Let s, m, 0 and III' III be defined as
in Example 3.4. Then X is a nals which has all the properties of the nals
discussed in Example 3.4. (b) For each AEXthere existsfESx• such that
f(A)= IIIAIII. Therefore in this space IIIQAIII = IIIAIII for each AEX, where Q
is defined by (2.9). (c) Rx=X.

3.6. EXAMPLE. (a) Let (E, 11'11) be an (AL)-space (see, e.g., [7]) and let
X be the set {x E E: x ~ 0 }. For x, y E X and )., E R, define s(x, y) = x + y
and m()." x) = 1).,1 x. The element 0 in X is the element 0 in E. Then X is an
als and V x = {O}. (b) For XEX, let IIlxlll = Ilxll. Then 111'111 satisfies
N j -N4 , and so X is a nals. (c) We have X*= {cp\X: epEE*, ep~O} and
V x. = {O}. Here X* is total over X and for each x E X there exists f ES x.,
withf(x) = IlIxlll. (d) R x = {O}.
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3.7. EXAMPLE. (a) Let E be a Is and qJ EE#, qJ t= O. Let X = {x EE:
qJ(x) > O} u {O}. Define s, m and 0 as in Example 3.6. Then X is an als and
Vx = {o}. (b) For XEX, let Illxlll =qJ(x). We have (Nd-(N4 ) and so X
together with 111'111 is a nals. (c) Letf= qJ IX. We have X* = {A 0 fA ER} =
PfA~O} and Vx.= {O}. For each XEX we have f(x) = Illxlll and
Illflll = 1. (d) R x = {O}.

3.8. EXAMPLE. (a) Let (E, 11'11) be a nls and let qJESE.' qJ attains its
norm on SE' Then H = {x EE: qJ(x) = O} is proximinal in E (i.e.,
PH(x) t= 0 for each x EE) and there exists a linear selection
PH(X)EPH(X), XEX (see, e.g., [25]). Let X= {xEE: qJ(x)~O}. For
x,yEX and A~O define s(x,y)=x+y,m(A,x)=Ax and m(-I,x)=
x - 2pH(X), The element 0 in X is the element 0 EE. Since PHis linear, X is
an als, and Vx=H. (b) Let Illxlll=qJ(x)+llpH(x)ll,xEX. Clearly, 111'111
satisfies (N2) and (N3). For (Nd, let XjEX, i=I,2,3. We have
IIIx, +m( -1, x3)111 = IIIx, +X3 - 2pH(x3)111 = qJ(x , ) + qJ(X3) + IlpH(xd
- PH(x3)/1 ~ qJ(x l +X2 - 2PH(X2)) + IlpH(x, +x2 - 2PH(X2))11 +
CP(X2+ X3 - 2PH(X3)) + IlpH(x2+ x 3 - 2PH(X3m = Illxl +X2 ­
2pH(x2)111 + IIIx2+x3 - 2pH(x3)111 = Illx l + m( -1, x2)III + IIIx2 +
m(-I,x3)111. To show (N4 ), let (Vn)nELI be a net in Vx(=H) and VoE Vx
such that Vn-..:. Vo, and let x EX. Then for each n EA we have
Illx-volll =cP(x-vn)+ IlpH(x)-voll ~ cp(x-vn)+lim infIIPH(x)-vnll =
liminf(qJ(x-vn) + IlpH(x)-vnll) = lim inflllx-vnlil. Therefore Xis a nals.
(c) Let xoEE,qJ(xo»O and PH(XO) =0. We have X*= {t/J'X: t/JEE*,
t/J(xo)~ O} and Vx. = {J EX*: j{xo) = O}. Here X* is total over X.
(d) Rx=X. Indeed, let XEX and gEVx (=H). If PH(X)=g, choose
VgE Vx such that Ilvg- gil = qJ(x). If PH(X) t= g, let vg= APH(X) + (1- A)g
E Vx , where A= I +qJ(x)/IIPH(x)- gil. In both cases vg satisfies (2.10) and
(2.11 ).

Lima introduced and studied the notion of a semi L-summand in a
Banach space. We recall the definition [19, Sect. 5].

3.9. DEFINITION. A linear subspace G of a Banach space E is a semi-L­
summand in E if G is Chebyshev in E (i.e., PG(x) is a singleton for each
x EE) and Ilxll = Ilx - PG(x)11 + liPG(x)ll, x EE.

3.10. (a) Let (E, 11'11) be a Banach space and G a semi L-summand in E.
Let X be a convex cone with vertex at 0 E E such that G c X and for each
x E X\G, - x ¢ X. Let us also assume that PG is additive on X. Define s, m,
and 0 as in Example 3.8 where we replace PH by PG' Then X is an als and
Vx=G. (b) For XEX let Illxlll = IIxll. Then 111'111 satisfies (N2 )--(N4 ).

640/43/4-4
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Let C(Q) be the Banach space of all continuous functions over the com­
pact Hausdorff space Q endowed with the sup norm.

3.11. EXAMPLE. (a) Let E= C([a, [J]), G the subspace of E consisting
of all functions which are constant on [a, [J] and Xc E the set of all non­
decreasing (similarly for nonincreasing) continuous functions on [a, [Jl By
[19, Theorem 7.8] G is a semi-L-summand in E. The set X is a convex
cone with vertex at 0 EE, G c X and for x EX\G we have -x $ x. If XE X,
then PG(x} is the constant function on [a, [J] which equals (x([J) + x(a))/2.
Then it is obvious that PG is additive on X. (We point out here that PG is
not additive on E (see, e.g., [15, p. 163]). Let S, m, and 0 be defined as in
3.10(a). As we have observed there, X is an als and Vx = G. (b) Let
Illxlll = Ilxll for each x EX. By 3.10(b), 111'111 satisfies (N2)-(N4 ). Now we
show that it satisfies also (N d. Let Xi EX, i = 1, 2, 3. Since for x EX, PG(x)
is the constant function (x([J)+x(a))/2 and Ilxll =max{lx(a)l, Ix([J)I}
we get Illx\ + m( -1, x3)111 = Ilx I+ X3 - 2PdX3)11 = max{ Ixl(a) - x3([J)I,
Ix l([J)-x3(a)I}. Suppose we have

(3.3)

If Illx I+m( -1, x3)111 = Xt([J) - x3(a), then since x2(a) ~ X2([J), we have
Illxt + m( -1, x3)111 ~ x\([J) - x2(a) + X2([J) - x3(a) ~ Ix\([J) - x2(a)1
+ IX2([J) -x3(a)1 ~ Illx I+ m( -1, x2)111 + IIIx2 + m( -1, x3)111. If IllxI +
m(-I,x3)III=x3(a)-x t([J), by (3.3) and since xi(a)~xi([J), i=I,3, we
have -x\(a)+x3([J)~x3(a)-xI([J), whence it follows x\(a)=x\([J) and
x3(a)=x3([J). Then as above, Illx I+m( -1, x3)111 =X3(P)-xI(a)~ Illx I +
m( -1, x2)111 + IIIx2+m( -1, x3)111. The case !x\([J) - x3(a)1 ~ Ixl(a) - x3([J)1
is proved in a similar way. Consequently 111'111 satisfies (N I)' Therefore X is
a nals. (c) Fer a ~ y~ [J define the functional fy by fy(x) = (x([J) + x(y))/2,
x EX. Then fy EX* and f~ E Vx•. Note that X* is total over X and for each
xEXthere isfESx• such thatf(x) = Illxlll. (d) Rx=X. Indeed, let gE Vx
( = G) and x EX. We denote by g the value of the constant function g on
[a, [Jl If Ix(a) - gl ~ Ix([J) - gl (resp. Ix([J) - gl ~ Ix(a) - gl), take VgE Vx
the constant function which equals x([J) (resp. x(a)). Then vg satisfies (2.10)
and (2.11).

4. BEST ApPROXIMATION IN NORMED ALMOST LINEAR SPACES

Let X be a nals, G a subset of X, and x EX. We define dist(x, G) and
PG(x) by (1.3) and (1.4), where we replace II '11 by III' III, keeping the same
definitions for proximinal and Chebyshev sets as in a nls. We denote
Dom(PG) = {XEX: PG(x) #- 0}.
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Some simple properties of the function dist(·, G) and of the set PG(x)
from the theory of best approximation in a nls can be extended in a nals
with similar proofs. Some other results from the theory of best
approximation in a nls can be proved in a similar way for a nals, but not in
the whole generality. One of the difficulties which appear when we want to
extend for a nals X some results which hold in a nls is due to the fact that
the function p(x, y)= Illx- YIII, x, yEX, is not a metric on X. Consequen­
tly, for some elements g E G we can get dist(g, G) # °and PG(g) = 0, as
simple examples show.

4.1. If dist(x, G) = ° for some x E X, then x E Vx' Indeed, let
{gn}:=lcG such that Illx-gnlll--+O. Then Illx-xlll~lllx-gnlll+

III gn - xiii =2111x - gnlll for each n, and so Illx - xiii =0, whence x - x =0, i,e.,
XE VX •

Since it is very difficult to obtain results when G is an arbitrary subset of
X, as a first step in the theory of best approximation in a nals we shall con­
sider in this section only the case when G c Vx. The restriction to subsets
G c Vx is of course severe, but we note that in Example 3.2 (similarly for
Examples 3.4 and 3.5) if x E X stands for the bounded, convex, nonempty
set AcE, then for any G c Vx (=E) we have

dist(x, G) = radG(A),

PG(x) = centG(A).

(4.1 )

(4.2)

Consequently, any information we get on the function dist( " G) and on the
set-valued mapping x --+ PG(x), when G c Vx and X is a nals, are also valid
for the function rad G(') and for the set-valued mapping A --+ centG(A), A a
bounded, nonempty subset of E (in view of (1.5) and (1.6)). Therefore the
theory of best simultaneous approximation in a nls is a particular case of
the theory of best approximation in a nals by elements of subsets G c Vx.

When G c Vx' then many more notions and results from the theory of
best approximation in a nls can be formulated and proved in a similar way
for a nals, e.g., [25, Chap. 1, Theorems 6.1 and 6.5J, all assertions which
do not involve a topology [8J, the approximatively compact sets with the
consequence that such sets are proximinal [26, Propositions 2.1 and 3.1 J,
10

<:> 20 [1, Proposition 4.1]. We shall refer several times to the following
immediate (due to (N4)) result.

4.2. PROPOSITION. Let X be a nals and G a boundedly weakly compact
subset of Vx. Then G is proximinal in X.

Yost [28J introduced and studied the closed linear subspaces with the
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1!-ball property in a Banach space E and proved that they are proximinal
in E. The next proposition is a localization of this result for a nals.

Let X be a nals and 0 =I- G c Vx. Let TG be the subset of X defined in
the following way: x E TGif for each g EG and r i > 0, i = 1, 2, the relations
Illx-glll<r l +r2,BAx,r2)nG=l-0 imply that Bx(g,rdnBx(x,r2)n
G =I- 0. Clearly we have GeTG'

4.3. PROPOSITION. Let X be a nals and G a complete subset of Vx. Then
for each x E TG we have PG(x) =I- 0.

It follows from [27] that centG(A) =I- 0 for every bounded nonempty
subset A c c(Q), where G = {x E C(Q): xl K = O}, and K is a closed subset
of Q. The next result shows that for compact (convex) sets of C(Q) we
have (due to Proposition 4.3) a stronger property, namely, that they
belong to TG (when X is the nals described in Example 3.2 for E = C(Q)).
The fact that the sets containing exactly one point belong to T G follows
from [28].

4.4. THEOREM. Let E = C(Q) and for K c Q, K closed, let
G = {x E C(Q): x IK =°}. Then for each compact set AcE the relations
gEG,gIEG,r l ,r2>0,llx-gll<rl +r2for each XEA and Ilx-glll~r2

for each xEA imply that there exists goEG such that Ilg-goll ~rl and
Ilx - goll ~ r2 for each x E A.

Proof Let H(R) = {[a, b]: a, bE R, a ~ b}, and for q EQ let I/J(q) be
defined by

I/J(q) = n [x(q) - r2, x(q) + r2] n [g(q) - rl, g(q) + rl]. (4.3)
XEA

We show that I/J: Q --+ H(R). Clearly, I/J(q) is closed and convex and so it
remains to show that I/J(q) =I- 0. By hypothesis, Ilx - gil < rl + r2 for each
x EA and so Ix(q) - g(q)1 < rl + r2 for each x EA. Hence, we get

xl(q) = SUpxEA(X(q) - r2 ) < g(q) + r l ,

X2(q) = infxEA(x(q) + r2)> g(q) - rl ·

(4.4 )

(4.5)

Then XI(q)~X2(q) since otherwise, by (4.4) and (4.5) there exist x, yEA
such that y(q) + r2 < x(q) - r2 and so 2r2< x(q) - y(q) =
(x(q)-gl(q))+(gl(q)-y(q)) ~ Ilx-glll+lly-glll ~ 2r2,whichisnot
possible. Then

I/J(q) = [XI(q), X2(q)] n [g(q) - rl> g(q) + rl] (4.6)

and by (4.4) and (4.5) it follows I/J(q) =I- 0.
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We show now that t/!: Q --+ H(R) is lower semicontinuous (lsc) (for the
definition of lsc see, e.g., [25]). Let qo E Q and (c, d) an open interval
such that t/!(qo) r. (c, d) =F 0. Let ao E t/!(qo) r. (c,d) and let 0 < e <
min{ao-c, d-ao}. Since A is compact, the functions x, and Xz defined by
(4.4) and (4.5) are continuous. There exists a neighbourhood U(qo) such
that

!x,(q)-x,(qo)! <e,

IxAq) - xz(qo)1 < e,

Ig(q) - g(qo)1 < e,

q E U(qo),

q E U(qo),

q E U(qo).

(4.7)

(4.8)

(4.9)

We show that t/!(q) n (c, d) =F 0 for each q E U(qo) which will prove that
t/! is lsc. Suppose t/!(q) n (c, d) = 0 for some q E U(qo). Then we have either
a :0:;; c for each a Et/!(q) or d:o:;; r:L for each r:L E t/!(q), say the former (the proof
for the latter case is similar). Then by (4.6) we have either Xz(q)Et/!(q) or
g(q) + r, E t/!(q). If xz(q) E t/!(q), then by our assumption xiq):O:;; c, and by
(4.8) we get xz(qo)<xz(q)+e:O:;;c+e<c+(r:Lo-c)=r:Lo, which is not
possible since r:LoEt/!(qo). If g(q)+r,Et/!(q), then g(qo)+rt<
g(q)+r, +e:O:;;c+e<r:Lo which is not possible since aoEt/!(qo).

If qEK, then OEt/!(q). Indeed, if qEK then for each XEA we have
Ix(q)1 =Ix(q)-g,(q) 1:0:;; Ilx-g,II:O:;;rz, and so -rz:o:;;x(q):o:;;rz. Then by
(4.4) and (4.5) we get x,(q)::;O and X2(q)~0, whence OEt/!(q) follows now
by (4.6) since g(q)=O.

Define 1'/: Q --+ H(R) by

( )= {t/!(q),
1'/ q {O},

q~K,

qEK.

Then 1'/ is lsc and by Michael's theorem [22] there exists goE C(Q) such
that go(q)E1'/(q),qEQ. For qEK, go(q) =0, i.e., goEG. Since for each
q E Q, go(q) E t/!(q), by (4.3) we get II g - goll :0:;; r, and Ilx - goll ::; rz for each
x EA, which completes the proof.

Let us recall the following definition [2, Definition 1.1].

4.5. DEFINITION. The nls E is said to be strictly convex with respect to
its linear subspace G if the conditions x, y EE, Ilxll = II yll = II (x + y)/211 = 1,
x - Y EG imply that x = y.

In the results 4.6-4.9 we shall use the set R x(G) defined in 2.12. The next
theorem generalizes results on best simultaneous approximation contained
in [15, p. 188; 4, 2, 24].

4.6. THEOREM. Let X be a nals and G a linear subspace of Vx. If Vx is
strictly convex with respect to G, then for each x E R x(G) the set PG(x) con-
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tains at most one element. If in addition G is reflexive then for each
xeRAG) the set PG(x) is a singleton.

Proof Let xERAG) and suppose there exist gt> gzEG such that
Illx - gilll = dist(x, G), i = 1, 2. Then Illx - (gl + gz)/2111 = dist(x, G). Since
xeRx(G), for the element (gl+gz)/2eG there exists voeVx such
that Illx- (gl + gz)/2111 = Illvo- (gl + gz)/2111, and Illx- gilll ~ Illvo- gilll,
i = 1, 2. Then dist(x, G) = Illvo - (gl + gz)/2111 ~ (1llvo - glill +
Illvo - gzlll )/2 ~ dist(x, G), and so Illvo - glill = Illvo - gzlll =
Illvo-(gl+gz)j2111. Since (vo-gd-(vo-gz)=gz-gIEG and Vx is
strictly convex with respect to G, it follows that gl = gz. If G is reflexive
then by Proposition 4.2, G is proximinal in X, which completes the proof.

Let X be a nals and 0 t= G c Vx' We shall assign to each x e Rx(G) a
nonempty subset DG(x)c Vx in the following way. For geG let Dg(x) be
the set of all vg E Vx satisfying (2.10) and (2.11). Since x ERx(G), the set
Dg(x) is nonempty. Let us set

DG(x) = U Dg(x),
gEG

4.7. LEMMA. Let xeRAG) and gEG. Then for each vg€Dg(x) we have

Consequently, the set DG(x) is a nonempty, bounded subset of Vx, which is
remotal with respect to G. IfxE Vx , then DG(x)= {x}.

Proof Let xERx(G), gEG and vgeDg(x). By (2.10) we have
Illx- gill = Illvg - gill· Let yeDG(x). By (2.11) we have Illx- gill ~ Illy- gill·
Therefore Illvg - gill = Illx- gill ~ Illy- gill, whence (4.10) follows since
vgeDG(x). Let now xe V x (cRx(G)) and voeDG(x). By (2.11) for
v=xe Vx we have 0= Illx-xlll ~ Illvo-xlll, i.e., X=Vo'

4.8. THEOREM. Let X be a nals, 0 t= GI c G c Vx and let x e Rx(G). We
have

dist(x, Gd = radG[(DG(x)),

PGl(X) = centGJDG(x)).

(4.11 )

(4.12)

Proof Let gl EGI . Since xeRAG) and GI c G, by Lemma 4.7 we have

whence (4.11) follows by taking the infimum in both sides over all g lEG I'

The proof of (4.12) is an immediate consequence of (4.10) and (4.11).
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4.9. COROLLARY. Let X be a nals and 0 =f:. G c Vx such that Rx(G) = X.
Suppose that for ,every nonempty bounded set A c Vx we have centG(A) =f:. 0
(centG(A) a singleton). Then G is proximal (Chebyshev) in X.

Borwein and Keener [3] examined the relationship between the
Hausdorff distance between convex closed sets in a nls and the distance
between their Chebyshev centers. Now we can assign to any x E Rx the set
co D(x) and by (1.5) and (1.6), formulas (4.11) and (4.12) hold for co D(x)
as well as for D(x). Then some consideration of [3] can be used together
with Theorem 4.8, to obtain information for a nals X.

We conclude this section by introducing the quotient space X/G, where
X is a nals and G a closed linear subspace of Vx.

First, let X be an als and G a linear subspace of Vx, and let X/G = {x =
x + G: x E X}. Clearly x= y iff x = y + g for some g E G. (Simple examples
show that this is no longer true when G is an arbitrary almost linear sub­
space of X.) As in the case when X is a Is, we can define s(x I' x2 ), 0 and
m(A, x). It is easy to show that X/G together with s: X/G x X/G --+ X/G and
m: R x X/G --+ X/G is an also Here we have VX/G = Vx/G.

Now suppose X is a nals and G a linear subspace of Vx. Let us define for
XEX/G,

Illxlll = dist(x, G), (4.13 )

where x E X. Since dist(x + g, G) = dist(x, G), g E G, III xiii does not depend
on the choice of x E X.

4.10. THEOREM. Let X be a nals and G a closed linear subspace of Vx.
Then X/G is an als and 111'111 defined by (4.13) satisfies (N I}-(N3)' It satisfies
(N4) if dim Vx/G < 00 or Vx is reflexive.

Proof As we have observed above, X/G is an als, and it is easy
to prove that (N2) and (N3) hold. To show (Nd, let XiEX/G,
XiEXi, i=I,2,3, and let 1'>0. By (4.13) there exist gl,g2EG
with Illxl-x3-gllll~dist(xl-x3,G)+s and Illx3-x2-g2111 ~

dist(x3 - x 2, G) + s. Then Illx l - x2111 = dist(xi - X2, G) ~ III (XI - gd­
(x2+g2)111 ~ Ill x I-gl -x3111 + Ill x3- x2-g2111 ~ dist(x 1 -x3,G) +
dist(x3- x 2 , G) + 21' = Illx l - x3111 + II1x3- x2111 + 2e, whence (N d follows.

To show (N4 ), let {Vn}nE<:lu{O} be a net in Vx/G (=Vx/G) such that
vn-'>.vo, and suppose there exists XEX/G such that liminflllx-vnlil <
Illx-volll. We can suppose (passing to a subnet) that Illx-vnlll <
C( < Illx - volll, n E A. Let x E X and VnE vn, n E Au {O}. Then by (4.13) there
exist gn E G, n E A such that

n E A. (4.14 )
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Suppose dim Vx/G < 00. Then vn-t Vo and so there exist gn E G,
n E L1 such that Vn - in -t vo. For sufficiently large n, Illvn- gn - voill <
dist(x - vo, G) - IX and so Illx - Vo - gn - in III ~ Illx - gn - vnlll +
Illvn- Vo - inlll < dist(x - vo, G), which is not possible.

Now suppose Vx is reflexive. By (4.14) it follows that {v n + gn}nE.1 is
bounded in Vx and so we can suppose (passing to a subnet) that
vn+gn--'>.v. Then vn--'>.v and since vn--'>.vo it follows v=vo+g for some
g E G. Then Illx - Vo - gill ~ lim infllix - Vn - gnlll ~ IX < dist(x - vo, G),
which is not possible. Therefore X/G is a nals if dim Vx/G < 00 or Vx is
reflexive. We do not know whether these assumptions are or not super­
fluous.

5. STRONG NORMED ALMOST LINEAR SPACES AND ApPLICATIONS

Let X be a nals and suppose there exists a semi-metric p on X (i.e., p
satisfies all the axioms of a metric except for p(x, y) = 0 implies x = y,
X,YEX), which satisfies (M 1HM 3 ) below. Let x,y,zEX and AER.
(Md 1IIIxili - Illyllll ~ p(x, y) ~ Illx- YIII; (M 2 ) p(x + z, Y + z) ~ p(x, y);
(M 3 ) The function A-t p(h, x) is continuous at A= 1.

5.1. DEFINITION. A strong normed almost linear space (snaIs) is a nals X
together with a semi-metric p satisfying (M d-(M 3 ).

5.2. (a) For x, yEX and VE VX we have

p(x+v, y+v)=p(x, y),

p(x, v)= Illx-vlll.

(5.1 )

(5.2)

Indeed, by (M 2 ) we have p(x+v,y+v) ~ p(x,y)
p((x+v)-v,(y+v)-v) ~ p(x+v,y+v), i.e., (5.1). Hence p(x,v)=
p(x - v, 0) and by (Md, Illx - viii ~ p(x - v, 0) ~ Illx - viii, i.e., we have (5.2).
(b) When X is a nls, by (5.2) it follows that the only semi-metric satisfying
(Md-(M3) is that generated by the norm. (c) By (5.1), to approximate x E X
by elements of a subset G c Vx in the norm III· III is the same as to
approximate it in the semi-metric p. Since in this section we have also results
concerning arbitrary G c X, we draw attention that in the sequel dist(x, G)
and P o(x) are given by (1.3) and (1.4) for 111·111·

We shall give now examples of snals.
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5.3. EXAMPLES. (i) Let X be the nals given in one of the Examples 3.2,
3.4, or 3.5. For AI' A 2E X let p(A I, A 2) be the Hausdorff semi-metric, i.e.,

p(A I, A 2) = max{ sUPai EAl dist(al> A 2), suPazEAz dist(a2, Ad}.

It is straightforward to show that p satisfies (M I )-(M 3 ). Notice that in
Examples 3.4 and 3.5, p is a metric on X.

(ii) Let X be the nals given in Example 3.6, and for x I , X 2 E X, let
p(XI> X2) = IlxI - x211 (here XI - X2 is understanded in E). Since E is an
(AL)-space, we have 1111xllll-lllx21111 = Illx,II-llx2111 :s; IlxI -x211 :s;
Ilxlll + IIx211 = IllxI +m( -1, x2)111, i.e., p satisfies (M l). It is obvious that it
satisfies (M 2 ) and (M 3 ). Here p is a metric on X.

(iii) Let X be the nals given in Example 3.7, and for XI' X2EX, let
P(XI, X2) = Icp(xd - cp(x2)1. Then p is a semi-metric on X which satisfies
(Md-(M 3 )·

(iv) Let X be the nals given in Example 3.11 or in Example 3.8 when
H is a semi L-summand in E. Then in both cases we have Illxlll = Ilxll for
each XEX. For Xl,X2EX let P(Xl ,X2)=/IXl-X211 (here XI -X2 is
understood in E). Then p is a metric on X satisfying (M I )-(M 3 ). Since
(M 2 ) and (M 3 ) are obvious, we show (Md for Example 3.8 (the proof for
Example 3.11 being similar). Let xl,x2EX. Then cp(x;) = CP(X;-PH(X;))
= Ilx;- PH(x;)II, i= 1, 2, and so p(xl , X2) = Ilxl -x211 :s; IlxI - PH(xdll +
IlpH(xd-PH(X2)11 + IlpH(X2)-x211 = CP(X I +X2) + /IPH(xd + PH(X2­
2PH(X2))IJ = cp(x l +m(-1,x2)) + IlpH(x l +m(-1,x2))IJ = IllxI +
m( -1, x2 )111. For the other inequality in (Md we use the assumption that
H is a semi L-summand in E. We have I Illxllll-lllx2111 I= Illxl ll-llx2111:S;
Ilxl-x211 =p(x l , X2)'

Some other examples of snals can be obtained using Theorems 5.4 and
5.7. The first one states that the dual space of a nals (not necessarily a
snals) is always a snals, and the second one states that when X is a snals
and G a closed linear subspace of Vx, then in the space X/G (not
necessarily satisfying (N4 )) there exists a semi-metric satisfying (M l HM 3 ).

5.4. THEOREM. For any nals X, the dual space X* is a snals for the
metric p defined by

Proof Clearly p is a metric on X. To prove (M d, let fl' f2 E X* and
xEBx . Then Ifl(X)I:S;lfl(X)-f2(X)I+lf2(X)I:S;p(fI,f2)+llIf2111, and
since xEBx was arbitrary, it follows Illftill :S;P(fI,f2) + IIlf2111. Similarly
IIIf2111 :S;P(fI,f2) + Illfllll, whence the first inequality in (Md follows. For
the other inequality, let X E Bx' By (2.6) we have that fl (x) - f2(X):S;
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f,(x) + f2( -x) = (f, + (-1 0 f2))(X) ~ 111ft + (-1 0 f2)111· Similarly f2(X)­
f,(x) ~ Illf, + (-1 0 f2)UI. Hence for each x E Bx we have If,(x) - fAx)1 ~

Illf, + (-1 0 f2)111 whence the right-hand side inequality in (Md follows.
To prove (M2), let f..EX*, i=1,2,3. Then P(f,+f3,f2+f3)=SUP

{I(f, + f3)(X) - (f2 +f3)(x)l: XE Bx } = p(f" f2)'
Finally we prove that for eachfEX*, the function ).,-+p().,oJ,f) is con­

tinuous at any ),,>0. Indeed, for ).,>0 we have p().,oJ,f)=sup{lf(h)­
f(x)l:xEBx}=I)"-lllllflll. Therefore X* is a snals, which completes the
proof.

In the sequel the folowing result will be of use.

5.5. LEMMA. Let X be a snals, 0"# G C X and x, y E X. We have

Idist(x, G)-dist(y, G)! ~p(x, y).

Proof Let e> 0 be given and let g E G such that Illy - gill ~

dist(y, G) +e. By (M d and (M2) we get dist(x, G) - dist(y, G) ~

IIlx - gill - IllY - gill + e ~ p(x - g, y - g) + e ~ p(x, y) + e. Similarly,
dist(y, G) -dist(x, G) ~ p(x, y) + e, whence Idist(x, G) - dist(y, G)I ~

p(x, y) + e, and the lemma follows.

5.6. COROLLARY. Let X be a snals, G c X and x, y E X such that
p(x, y)=O. Then dist(x, G)=dist(y, G) and PG(x)=PG(y).

Proof By Lemma 5.5 we get dist(x, G) = dist(y, G). Now let g E PG(x).
Then 0 ~ IllY - gill - dist(y, G) = lIlY - gill - dist(x, G) = Illy - gill ­
IIlx-glll ~ p(y-g,x-g) ~ p(y,x)=O and so gEPdy), i.e., PG(x)c
PG(Y)' The other inclusion is proved in a similar way.

5.7. THEOREM. Let X be a snals with the semi-metric p and G a closed
linear subspace of Vx' Then p defined for x" X2 E X/G by

(5.3 )

is a semi-metric on X/G satisfying (Md-(M 3 ).

Proof We first observe that since p satisfies (5.1), the definition of
p(x" X2) in (5.3) does not depend on the choice of XiEXi. Clearly if
x, =X2, then for XEXi, i= 1, 2 we have by (5.3) p(x" X2)~P(X, x)=O, i.e.,
P(X"X2)=0. By (5.1) for p we get P(X"X2)=P(X2,xd. Now let XiEX/G
and let XiEXi, i=1,2,3. Then for any g"g2EG we have P(X"X3)~

p(x, + g" X3 + g2) ~ p(x, + g" X2) + P(X2, X3 + g2), whence since g" g2
were arbitrary in G, it follows that fJ(X"X3)~P(X"X2)+fJ(X2,X3)'

Therefore p is a semi-metric on X/G.
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To show (Md for P, let XiEX/G,xiExi, i=I,2, and gEG. By
Lemma5.5 we have 1111xllll-lllx21111 = Idist(x l ,G)-dist(x2,G)1 =
Idist(x1 + g, G) - dist(x2' G)I ~ p(x1 + g, X2), whence since g EG was
arbitrary, we get IlIlxdll-lIlx21111 ~ p(x l , X2)' Now P(Xl' X2) ~

p(Xl +g,X2) ~ IIIx l -x2+glll and so P(Xl,X2) ~ dist(x l -x2,G) =
Illx l -x2111 which proves (M l ).

To show (M2), let XiE X/G, XiE Xi' i= 1, 2, 3, and gE G. Then P(Xl + X3'
X2 + X3) ~ P(Xl + X3 + g, X2 + X3) ~ p(xl + g, X2), whence (M2) follows.

Finally, to show (M 3) let XEX/G and XEX. We have by (5.3),
p(U, x) ~ p(Ax, x) and since p(Ax, x) --+ 0 for A--+ 1, we obtain (M 3 ) for P,
which completes the proof.

In a snals X the semi-metric p generates a topology on X (which is not
Hausdorff in general) and in the sequel when we shall say that a set is
closed, open, etc., we shall understand that in this topology. If we need this
topology to be Hausdorff, then we assume p to be a metric on X. In view of
5.2(b), the topology on the nls Vx generated by p is the same as the
topology generated by the norm III' III.

5.8. In a nals X the set Bx(x, r) is closed. Indeed, let {xn}:'=ocX such
that Illxn- xiii ~ r, n ~ 1, and p(xn, xo) --+ O. By (Md and (M 2 ) we have
Illxo-xlll-lllxn-xlll ~p(xo-x,xn-x)~p(xo,xn) and so Illxo-xlli ~
r+ p(xo, xn) --+ r.

5.9. Let X be a snals and G C X. (a) Let x E X, Y EDom(PG) and
gEPG(y). By (Md, (M 2 ) and Lemma 5.5 it follows that

III x - gill ~ dist(x, G) + 2p(y, x). (5.4 )

Consequently, if {xn}:,= 1 C Dom(PG) and x E X are such that p(xn, x) --+ 0,
and gn E PG(xn), then

limlllx- gnlll = dist(x, G). (5.5)

(b) For goEG, the set PC;l(gO)= {XEX: goEPG(X)} is closed. IfG is
a linear subspace of Vx, then Pc; l(gO) is a cone with vertex at go.

In the framework of a snals X, we can discuss the continuity (semi­
continuity) properties of the set-valued mapping x --+ PG(x), That will be
done from now on. The results are known either for best approximations in
a nls or for best simultaneous approximations in a rus. We use the follow­
ing abbreviations: uKsc for upper Kuratowski semicontinuous, usc (lsc) for
upper (lower) semicontinuous. We draw attention to the fact that we use
these semicontinuity properties in a slightly more general framework than
in [25, 26], but the definitions are the same.
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5.10. PROPOSITION. Let X be a snals and G e X.

(i) If G is closed, then PG is uKsc at any x E Dom(PG)'

(ii) If G e Vx, then PG is both usc and lsc at any g E G.

(iii) If G is a closed subset of Vx and span G is finite-dimensional,
then PG is usc on X.

Proof (i) Let xEDom(PG) and let XnEX such that p(xn,x)~O. Let
gnEPG(xn) and gEG with p(gn, g)~O. By (5.5) we get limllix-gnill =
dist(x, G). By (Md and (M 2 ) we have Illg-xlll-lllgn-xlll ~ p(g-x,
gn- x ) ~ p(g, gn), whence IIlx- gill =dist(x, G), i.e., gEPG(X).

(ii) Use Lemma 5.5.

(iii) By Proposition 4.2, G is proximal in X. To show that PGis usc,
use (i) above and the hypothesis on G.

We recall [15, p. 146] that a Banach space B is an E-space if B is
reflexive, strictly convex, and Xn, XES B , Xn---"-X imply Xn~X'

5.11. THEOREM. Let X be a snals and suppose that Vx is an E-space. Let
G be a closed linear subspace of Vx. Then PG is both lsc and usc at any
xERx(G).

Proof By Proposition 4.2, G is proximinal in X. Let x E Rx(G). By
Theorem 4.6, PG(x) is a singleton, say, PG(X) = {go}. By
Proposition 5.10(ii) we can suppose x¢G. Let {Xn }:'=l eX such that
p(xn, x) ~ 0, and let gn E PG(xn), Then the sequence {gn}:'= 1 is bounded in
Vx, since Illgnlll~211Ixnlll=2p(xn,0)~2(p(xn,x)+p(x,O)). Since Vx is
reflexive and PG(x) = {go}, by N 4 and (5.5) we get gn ---"- go. By hypothesis,
x E R x(G) and so for go E G there exists Vo E Vx such that

Illx - golll = Illvo - golll,

Illx- gnlll ~ Illvo- gnlll, nEN.

(5.6)

(5.7)

Let {gn,} e {gn} with lim sUPlllvo- gnlll =limillvo- gn,lll. We have
Vo- gn---"-vo- go, and by (5.6), (5.7), and (5.5) we get dist(x, G) =
Illx - golll = Illvo- golll ~ lim infilivo - gnlll ~ lim supilivo - gnlll =
limillvo- gn,lll ~ lim inflllx- gn,lll = dist(x, G). Therefore Illvo- gnlll--+
Illvo- golll, and since Vx is an E-space it follows that Vo- gn --+ Vo - go and
so gn ~ go. Since gn E PG(xn) were arbitrary, it is now immediate that PGis
both usc and lsc at xERAG).

We conclude this paper mentioning that we have also extended for a
snals, the following results from the theory of best (or best simultaneous)
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approximation in a nls: [13, Corollary 1; 14, Theorem 1; 17, Proposition;
20, Theorems 2 and 3; 21, Theorems 5 and 6]. The formulations and
proofs will be given elsewhere.
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